django-grpc-framework
Release 0.2

May 22, 2020

Contents

1 User’s Guide

1.1 Installation
1.2 Quickstart
1.3
14
1.5 Generic services
1.6 Proto Serializers
1.7
1.8
1.9
1.10 Settings
1.11 Patterns for gRPC
2 Additional Stuff
2.1 Changelog
2.2
Index

Proto
Server. e
Testing

License

Tutorial
Services e

django-grpc-framework, Release 0.2

Django gRPC framework is a toolkit for building gRPC services with Django. Officially we only support proto3.

Contents 1

django-grpc-framework, Release 0.2

2 Contents

CHAPTER 1

User’s Guide

This part of the documentation begins with installation, followed by more instructions for building services.

1.1 Installation

1.1.1 Requirements

We requires the following:
* Python (3.6, 3.7, 3.8)
* Django (2.2, 3.0)
* Django REST Framework (3.10.x, 3.11.x)
* gRPC
* gRPC tools

e proto3

1.1.2 virtualenv

Virtualenv might be something you want to use for development! let’s create one working environment:

mkdir myproject

cd myproject

python3 -m venv env
source env/bin/activate

Uy 0 r

It is time to get the django grpc framework:

django-grpc-framework, Release 0.2

pip install djangogrpcframework
pip install django

pip install djangorestframework
pip install grpcio

pip install grpcio-tools

v Ay

1.1.3 System Wide

Install it for all users on the system:

$ sudo pip install djangogrpcframework

1.1.4 Development Version

Try the latest version:

source env/bin/activate

git clone https://github.com/fengsp/django-grpc—framework.git
cd django-grpc-framework

python setup.py develop

v W

1.2 Quickstart

We’re going to create a simple service to allow clients to retrieve and edit the users in the system.

1.2.1 Project setup

Create a new Django project named quickstart, then start a new app called account:

Create a virtual environment

python3 -m venv env

source env/bin/activate

Install Django and Django gRPC framework
pip install django

pip install djangorestframework

pip install djangogrpcframework

pip install grpcio

pip install grpcio-tools

Create a new project and a new application
django-admin startproject quickstart

cd quickstart

django-admin startapp account

Now sync the database:

python manage.py migrate

4 Chapter 1. User’s Guide

django-grpc-framework, Release 0.2

1.2.2 Update settings

Add django_grpc_framework to INSTALLED_APPS, settings module is in quickstart/settings.py:

INSTALLED_APPS = [

'django_grpc_framework',

1.2.3 Defining protos

Our first step is to define the gRPC service and messages, create a file quickstart/account.proto next to
quickstart/manage.py:

syntax = "proto3";
package account;
import "google/protobuf/empty.proto";

service UserController {
rpc List (UserListRequest) returns (stream User) {}
rpc Create (User) returns (User) {}
rpc Retrieve (UserRetrieveRequest) returns (User) {}
rpc Update (User) returns (User) {}
rpc Destroy (User) returns (google.protobuf.Empty) {}

message User ({
int32 id = 1;
string username = 2;
string email = 3;
repeated int32 groups = 4;

message UserListRequest {
}

message UserRetrieveRequest ({
int32 id = 1;

Or you can generate it automatically based on User model:

python manage.py generateproto —--model django.contrib.auth.models.User —--fields id,
—username,email, groups ——-file account.proto

Next we need to generate gRPC code, from the quickstart directory, run:

python -m grpc_tools.protoc --proto_path=./ —-python_out=./ —--grpc_python_out=./ ./
—;account .proto

1.2.4 Writing serializers

Then we’re going to define a serializer, let’s create a new module named account/serializers.py:

1.2. Quickstart 5

django-grpc-framework, Release 0.2

from django.contrib.auth.models import User
from django_grpc_framework import proto_serializers
import account_pb2

class UserProtoSerializer (proto_serializers.ModelProtoSerializer):

class Meta:
model = User
proto_class = account_pb2.User
fields = ['id', 'username', 'email', 'groups']

1.2.5 Writing services

Now we’d write some a service, create account/services.py:

from django.contrib.auth.models import User
from django_grpc_ framework import generics
from account.serializers import UserProtoSerializer

class UserService (generics.ModelService) :

mmn

gRPC service that allows users to be retrieved or updated.

mmn

queryset = User.objects.all().order_by('-date_joined")
serializer_class = UserProtoSerializer

1.2.6 Register handlers

Ok, let’s wire up the gRPC handlers, edit quickstart/urls.py:

import account_pb2_grpc
from account.services import UserService

urlpatterns = []

def grpc_handlers(server):

account_pb2_grpc.add_UserControllerServicer_to_server (UserService.as_servicer (),

—»server)

[

We’re done, the project layout should look like:

./quickstart
./quickstart/asgi.py
./quickstart/__init__ .py
./quickstart/settings.py
./quickstart/urls.py
./quickstart/wsgi.py

. /manage.py

. /account
./account/migrations

(continues on next page)

Chapter 1. User’s Guide

django-grpc-framework, Release 0.2

(continued from previous page)

./account/migrations/__init__ .py
./account/services.py
./account/models.py
./account/serializers.py
./account/__init__.py
./account/apps.py
./account/admin.py
./account/tests.py
./account .proto
./account_pb2_grpc.py
./account_pb2.py

1.2.7 Calling our service

Fire up the server with development mode:

python manage.py grpcrunserver --—dev

We can now access our service from the gRPC client:

import grpc
import account_pb2
import account_pb2_grpc

with grpc.insecure_channel ('localhost:50051") as channel:
stub = account_pb2_grpc.UserControllerStub (channel)
for user in stub.List (account_pb2.UserListRequest()):
print (user, end='")

1.3 Tutorial

This part provides a basic introduction to work with Django gRPC framework. In this tutorial, we will create a simple
blog rpc server. You can get the source code in tutorial example.

1.3.1 Building Services

This tutorial will create a simple blog gRPC Service.

Environment setup

Create a new virtual environment for our project:

python3 -m venv env
source env/bin/activate

Install our packages:

1.3. Tutorial 7

https://github.com/fengsp/django-grpc-framework/tree/master/examples/tutorial

django-grpc-framework, Release 0.2

pip install django

pip install djangorestframework # we need the serialization
pip install djangogrpcframework

pip install grpcio

pip install grpcio-tools

Project setup

Let’s create a new project to work with:

django—-admin startproject tutorial
cd tutorial

Now we can create an app that we’ll use to create a simple gRPC Service:

python manage.py startapp blog

We’ll need to add our new blog app and the django_grpc_framework app to INSTALLED_APPS. Let’s edit
the tutorial/settings.py file:

INSTALLED_APPS = [

'django_grpc_framework',
'blog',

Create a model

Now we’re going to create a simple Post model that is used to store blog posts. Edit the blog/models. py file:

from django.db import models

class Post (models.Model) :
title = models.CharField (max_length=100)
content = models.TextField()
created = models.DateTimeField (auto_now_add=True)

class Meta:
ordering = ['created']

We also need to create a migration for our post model, and sync the database:

python manage.py makemigrations blog
python manage.py migrate

Defining a service

Our first step is to define the gRPC service and messages, create a directory tutorial/protos that sits
next to tutorial/manage.py, create another directory protos/blog_proto and create the protos/
blog_proto/post.proto file:

8 Chapter 1. User’s Guide

django-grpc-framework, Release 0.2

syntax = "proto3";
package blog proto;
import "google/protobuf/empty.proto";

service PostController {
rpc List (PostListRequest) returns (stream Post) {}
rpc Create (Post) returns (Post) {}
rpc Retrieve (PostRetrieveRequest) returns (Post) {}
rpc Update (Post) returns (Post) {}
rpc Destroy(Post) returns (google.protobuf.Empty) {}

message Post {
int32 id = 1;
string title = 2;
string content = 3;

message PostListRequest {
}

message PostRetrieveRequest {
int32 id = 1;

For a model-backed service, you could also just run the model proto generator:

python manage.py generateproto —--model blog.models.Post —--fields=id,title,content ——
—file protos/blog_proto/post.proto

Then edit it as needed, here the package name can’t be automatically inferred by the proto generator, change package
post to package blog_proto.

Next we need to generate gRPC code, from the tutorial directory, run:

python -m grpc_tools.protoc --proto_path=./protos --python_out=./ ——grpc_python_out=./
< ./protos/blog_proto/post.proto

Create a Serializer class

Before we implement our gRPC service, we need to provide a way of serializing and deserializing the post instances
into protocol buffer messages. We can do this by declaring serializers, create a file in the blog directory named
serializers.py and add the following:

from django_grpc_framework import proto_serializerss
from blog.models import Post
from blog proto import post_pb2

class PostProtoSerializer (proto_serializers.ModelProtoSerializer):
class Meta:
model = Post
proto_class = post_pb2.Post
fields = ['id', 'title', 'content']

1.3. Tutorial 9

django-grpc-framework, Release 0.2

Write a service

With our serializer class, we’ll write a regular grpc service, create a file in the b1log directory named services.py
and add the following:

import grpc

from google.protobuf import empty_pb2

from django_grpc_ framework.services import Service
from blog.models import Post

from blog.serializers import PostProtoSerializer

class PostService (Service) :
def List (self, request, context):
posts = Post.objects.all()
serializer = PostProtoSerializer (posts, many=True)
for msg in serializer.message:
yield msg

def Create(self, request, context):
serializer = PostProtoSerializer (message=request)
serializer.is_valid(raise_exception=True)
serializer.save ()
return serializer.message

def get_object (self, pk):
try:
return Post.objects.get (pk=pk)
except Post.DoesNotExist:
self.context.abort (grpc.StatusCode.NOT_FOUND, 'Post:%s not found!' % pk)

def Retrieve(self, request, context):
post = self.get_object (request.id)
serializer = PostProtoSerializer (post)
return serializer.message

def Update(self, request, context):
post = self.get_object (request.id)
serializer = PostProtoSerializer (post, message=request)
serializer.is_valid(raise_exception=True)
serializer.save ()
return serializer.message

def Destroy(self, request, context):
post = self.get_object (request.id)
post.delete ()
return empty_pb2.Empty ()

Finally we need to wire there services up, create blog/handlers.py file:

from blog._services import PostService
from blog proto import post_pb2_grpc

def grpc_handlers (server):
post_pb2_grpc.add_PostControllerServicer_to_server (PostService.as_servicer(),
—server)

10 Chapter 1. User’s Guide

django-grpc-framework, Release 0.2

Also we need to wire up the root handlers conf, in tutorial/urls.py file, include our blog app’s grpc handlers:

from blog.handlers import grpc_handlers as blog_grpc_handlers

urlpatterns = []

def grpc_handlers (server):
blog_grpc_handlers (server)

Calling our service

Now we can start up a gRPC server so that clients can actually use our service:

python manage.py grpcrunserver —--dev

In another terminal window, we can test the server:

import grpc
from blog proto import post_pb2, post_pb2_grpc

with grpc.insecure_channel ('localhost:50051") as channel:
stub = post_pb2_grpc.PostControllerStub (channel)
print ('-————— Create ————- ")

response = stub.Create (post_pb2.Post (title='tl', content='cl'))
print (response, end='")
print ('-———— List ————-— ")
for post in stub.List (post_pb2.PostListRequest()):
print (post, end='")
print ('-————— Retrieve ————-— ")
response = stub.Retrieve (post_pb2.PostRetrieveRequest (id=response.id))
print (response, end='")
print ('-————— Update ————-— ")
response = stub.Update (post_pb2.Post (id=response.id, title='t2', content='c2'))
print (response, end='")
print ('-————— Delete ————— ")
stub.Destroy (post_pb2.Post (id=response.id))

1.3.2 Using Generic Services

We provide a number of pre-built services as a shortcut for common usage patterns. The generic services allow you to
quickly build services that map closely to database models.

Using mixins
The create/list/retrieve/update/destroy operations that we’ve been using so far are going to be similar for any model-
backend services. Those operations are implemented in gRPC framework’s mixin classes.

Let’s take a look at how we can compose the services by using the mixin classes, here is our blog/services file
again:

1.3. Tutorial 11

django-grpc-framework, Release 0.2

from blog.models import Post

from blog.serializers import PostProtoSerializer
from django_grpc_ framework import mixins

from django_grpc_ framework import generics

class PostService (mixins.ListModelMixin,

mixins.CreateModelMixin,
mixins.RetrieveModelMixin,
mixins.UpdateModelMixin,
mixins.DestroyModelMixin,
generics.GenericService) :

queryset = Post.objects.all()

serializer_class = PostProtoSerializer

We are building our service with GenericService, and adding in ListModelMixin,*‘CreateModelMixin‘*,
etc. The base class provides the core functionality, and the mixin classes provice the .List () and .Create ()
handlers.

Using model service

If you want all operations of create/list/retrieve/update/destroy, we provide one already mixed-in generic services:

class PostService (generics.ModelService) :
queryset = Post.objects.all()
serializer_class = PostProtoSerializer

1.3.3 Writing and running tests

Let’s write some tests for our service and run them.

Writing tests

Let’s edit the blog/tests.py file:

import grpc

from django_grpc_framework.test import RPCTestCase
from blog proto import post_pb2, post_pb2_grpc
from blog.models import Post

class PostServiceTest (RPCTestCase) :
def test_create_post (self):
stub = post_pb2_grpc.PostControllerStub (self.channel)
response = stub.Create (post_pb2.Post(title='title', content='content'))
self.assertEqual (response.title, 'title')
self.assertEqual (response.content, 'content')
self.assertEqual (Post.objects.count (), 1)

def test_list_posts(self):
Post.objects.create(title="titlel', content='contentl')
Post.objects.create(title="title2', content='content2")
stub = post_pb2_grpc.PostControllerStub (self.channel)

(continues on next page)

12 Chapter 1. User’s Guide

django-grpc-framework, Release 0.2

(continued from previous page)

post_list = list(stub.List (post_pb2.PostListRequest()))
self.assertEqual (len(post_list), 2)

Running tests

Once you’ve written tests, run them:

’python manage.py test

1.4 Services

Django gRPC framework provides an Service class, which is pretty much the same as using a regular gRPC gener-
ated servicer interface. For example:

import grpc

from django_grpc_framework.services import Service
from blog.models import Post

from blog.serializers import PostProtoSerializer

class PostService (Service) :
def get_object (self, pk):
try:
return Post.objects.get (pk=pk)
except Post.DoesNotExist:
self.context.abort (grpc.StatusCode.NOT_FOUND, 'Post: not found!' % pk)

def Retrieve(self, request, context):
post = self.get_object (request.id)
serializer = PostProtoSerializer (post)
return serializer.message

1.4.1 Service instance attributes

The following attributes are available in a service instance.
* .request - the gRPC request object
e .context -the grpc.ServicerContext object

e .action - the name of the current service method

1.4.2 As servicer method

classmethod Service.as_servicer (**initkwargs)
Returns a gRPC servicer instance:

servicer = PostService.as_servicer ()
add_PostControllerServicer_to_server (servicer, server)

1.4. Services 13

django-grpc-framework, Release 0.2

1.4.3 Root handlers hook

We need a hanlders hook function to add all servicers to the server, for example:

def grpc_handlers (server) :
demo_pb2_grpc.add_UserControllerServicer_to_server (UserService.as_servicer (),
—sserver)

You can set the root handlers hook using the ROOT_HANDLERS_HOOK setting key, for example set the following in
your settings.py file:

GRPC_FRAMEWORK = {

'ROOT_HANDLERS_HOOK': 'path.to.your.curtom_grpc_handlers',

The default setting is ' { settings.ROOT_URLCONF}.grpc_handlers'.

1.5 Generic services

The generic services provided by gRPC framework allow you to quickly build gRPC services that map closely to your
database models. If the generic services don’t suit your needs, use the regular Service class, or reuse the mixins
and base classes used by the generic services to compose your own set of ressable generic services.

For example:

from blog.models import Post
from blog.serializers import PostProtoSerializer
from django_grpc framework import generics

class PostService (generics.ModelService) :
queryset = Post.objects.all()
serializer_class = PostProtoSerializer

1.5.1 GenericService

This class extends Service class, adding commonly required behavior for standard list and detail services. All
concrete generic services is built by composing GenericService, with one or more mixin classes.

Attributes

Basic settings:
The following attributes control the basic service behavior:

* queryset - The queryset that should be used for returning objects from this service. You must set this or
override the get_queryset method, you should call get_queryset instead of accessing this property
directly, as queryset will get evaluated once, and those results will be cached for all subsequent requests.

e serializer_class - The serializer class that should be used for validating and deserializing input, and for
serializing output. You must either set this attribute, or override the get_serializer_class () method.

e lookup_field - The model field that should be used to for performing object lookup of individual model
instances. Defaults to primary key field name.

14 Chapter 1. User’s Guide

django-grpc-framework, Release 0.2

e lookup_request_field - The request field that should be used for object lookup. If unset this defaults to
using the same value as 1ookup_field.

Methods

class django_grpc_framework.generics.GenericService (**kwargs)
Base class for all other generic services.

filter_queryset (queryset)
Given a queryset, filter it, returning a new queryset.

get_object ()
Returns an object instance that should be used for detail services. Defaults to using the lookup_field
parameter to filter the base queryset.

get_queryset ()
Get the list of items for this service. This must be an iterable, and may be a queryset. Defaults to using
self.queryset.

If you are overriding a handler method, it is important that you call get_queryset () instead of access-
ing the queryset attribute as queryset will get evaluated only once.

Override this to provide dynamic behavior, for example:

def get_queryset (self):
if self.action == 'ListSpecialUser':
return SpecialUser.objects.all()
return super () .get_queryset ()

get_serializer (*args, **kwargs)
Return the serializer instance that should be used for validating and deserializing input, and for serializing
output.

get_serializer_class()
Return the class to use for the serializer. Defaults to using self.serializer_class.

get_serializer_ context ()
Extra context provided to the serializer class. Defaults to including grpc_request, grpc_context,
and service keys.

1.5.2 Mixins

The mixin classes provide the actions that are used to privide the basic service behavior. The mixin classes can be
imported from django_grpc_framework.mixins.

class django_grpc_framework.mixins.ListModelMixin

List (request, context)
List a queryset. This sends a sequence of messages of serializer.Meta.proto_class to the
client.

Note: This is a server streaming RPC.

class django_grpc_framework.mixins.CreateModelMixin

1.5. Generic services 15

django-grpc-framework, Release 0.2

Create (request, context)
Create a model instance.

The request shoule be a proto message of serializer.Meta.proto_class. If an object is created
this returns a proto message of serializer.Meta.proto_class.

perform create (serializer)
Save a new object instance.

class django_grpc_framework.mixins.RetrieveModelMixin

Retrieve (request, context)
Retrieve a model instance.

The request have to include a field corresponding to lookup_request_field. If an object can be
retrieved this returns a proto message of serializer.Meta.proto_class.

class django_grpc_framework.mixins.UpdateModelMixin

Update (request, context)
Update a model instance.

The request shoule be a proto message of serializer.Meta.proto_class. If an object is updated
this returns a proto message of serializer.Meta.proto_class.

perform_update (serializer)
Save an existing object instance.

class django_grpc_framework.mixins.DestroyModelMixin

Destroy (request, context)
Destroy a model instance.

The request have to include a field corresponding to 1ookup_request_field. If an object is deleted
this returns a proto message of google.protobuf.empty_pb2.Empty.

perform_destroy (instance)
Delete an object instance.

1.5.3 Concrete service classes

The following classes are the concrete generic services. They can be imported from django_grpc_framework.
generics.

class django_grpc_framework.generics.CreateService (**kwargs)
Concrete service for creating a model instance that provides a Create () handler.

class django_grpc_framework.generics.ListService (**kwargs)
Concrete service for listing a queryset that provides a List () handler.

class django_grpc_framework.generics.RetrieveService (**kwargs)
Concrete service for retrieving a model instance that provides a Retrieve () handler.

class django_grpc_framework.generics.DestroyService (**kwargs)
Concrete service for deleting a model instance that provides a Destroy () handler.

class django_grpc_framework.generics.UpdateService (**kwargs)
Concrete service for updating a model instance that provides a Update () handler.

16 Chapter 1. User’s Guide

django-grpc-framework, Release 0.2

class django_grpc_framework.generics.ReadOnlyModelService (**kwargs)
Concrete service that provides default List () and Retrieve () handlers.

class django_grpc_framework.generics.ModelService (**kwargs)
Concrete service that provides default Create (), Retrieve (), Update (), Destroy () and List ()
handlers.

You may need to provide custom classes that have certain actions, to create a base class that provides List () and
Create () handlers, inherit from GenericService and mixin the required handlers:

from django_grpc_ framework import mixins
from django_grpc_framework import generics

class ListCreateService (mixins.CreateModelMixin,
mixins.ListModelMixin,
GenericService) :

mmn

Concrete service that provides "~ "Create() ' and " "List () handlers.

mmn

pass

1.6 Proto Serializers

The serializers work almost exactly the same with REST framework’s Serializer classand ModelSerializer,
but use message instead of data as input and output.

1.6.1 Declaring serializers

Declaring a serializer looks very similar to declaring a rest framework serializer:

from rest_ framework import serializers
from django_grpc_ framework import proto_serializers

class PersonProtoSerializer (proto_serializers.ProtoSerializer):
name = serializers.CharField(max_length=100)
email = serializers.EmailField (max_length=100)

class Meta:
proto_class = hrm_pb2.Person

1.6.2 Overriding serialization and deserialization behavior

A proto serializer is the same as one rest framework serializer, but we are adding the following logic:
* Protobuf message -> Dict of python primitive datatypes.
* Protobuf message <- Dict of python primitive datatypes.

If you need to alter the convert behavior of a serializer class, you can do so by overriding the .message_to_data ()
or .data_to_message methods.

Here is the default implementation:

1.6. Proto Serializers 17

django-grpc-framework, Release 0.2

from google.protobuf. json format import MessageToDict, ParseDict

class ProtoSerializer (BaseProtoSerializer, Serializer):
def message_to_data(self, message):
"""pProtobuf message —> Dict of python primitive datatypes.
won
return MessageToDict (
message, including_default_value_fields=True,
preserving_proto_field name=True

def data_to_message(self, data):
"""protobuf message <—- Dict of python primitive datatypes."""
return ParseDict (
data, self.Meta.proto_class(),
ignore_unknown_fields=True

The default behavior requires you to provide ProtoSerializer.Meta.proto_class, itis the protobuf class
that should be used for create output proto message object. You must either set this attribute, or override the
data_to_message () method.

1.6.3 Serializing objects

We can now use PersonProtoSerializer to serialize a person object:

>>> gerializer = PersonProtoSerializer (person)
>>> serializer.message

name: "amy"

email: "amy@demo.com"

>>> type (serializer.message)

<class 'hrm_pb2.Person'>

1.6.4 Deserializing objects

Deserialization is similar:

>>> serializer = PersonProtoSerializer (message=message)
>>> serializer.is_valid()

True

>>> serializer.validated_data

OrderedDict ([('name', 'amy'), ('email', 'amy@demo.com')])

1.6.5 ModelProtoSerializer

This is the same as a rest framework ModelSerializer:

from django_grpc_framework import proto_serializers
from hrm.models import Person
import hrm pb2

(continues on next page)

18 Chapter 1. User’s Guide

django-grpc-framework, Release 0.2

(continued from previous page)

class Meta:

model = Person
proto_class = hrm_pb2.Person
fields = ' all_ '

class PersonProtoSerializer (proto_serializers.ModelProtoSerializer):

1.7 Proto

Django gRPC framework provides support for automatic generation of proto.

1.7.1 Generate proto for model

If you want to automatically generate proto definition based on a model, you can use the generateproto manage-

ment command:

python manage.py generateproto —-model django.contrib.auth.models.User

To specify fields and save it to a file, use:

—username,email —-file demo.proto

python manage.py generateproto —--model django.contrib.auth.models.User —--fields id,

Once you’ve generated a proto file in this way, you can edit it as you wish.

1.8 Server

1.8.1 grpcrunserver

Run a grpc server:

’$ python manage.py grpcrunserver

Run a grpc development server, this tells Django to use the auto-reloader and run checks:

’$ python manage.py grpcrunserver —--dev

Run the server with a certain address:

’$ python manage.py grpcrunserver 127.0.0.1:8000 --max-workers 5 ‘

1.8.2 Configuration

Setting the server interceptors

If you need to add server interceptors, you can do so by setting the

SERVER_INTERCEPTORS setting. For example, have something like this in your settings.py file:

1.7. Proto

19

https://developers.google.com/protocol-buffers/docs/proto3

django-grpc-framework, Release 0.2

GRPC_FRAMEWORK = {

'SERVER_INTERCEPTORS': [
'path.to.DoSomethingInterceptor',
'path.to.DoAnotherThingInterceptor',

1.9 Testing

Django gRPC framework includes a few helper classes that come in handy when writing tests for services.

1.9.1 The test channel

The test channel is a Python class that acts as a dummy gRPC channel, allowing you to test you services. You can
simulate gRPC requests on a service method and get the response. Here is a quick example, let’s open Django shell
python manage.py shell:

>>> from django_grpc_ framework.test import Channel

>>> channel = Channel ()
>>> stub = post_pb2_grpc.PostControllerStub (channel)
>>> response = stub.Retrieve (post_pb2.PostRetrieveRequest (id=post_id))

>>> response.title
'This is a title'

1.9.2 RPC test cases

Django gRPC framework includes the following test case classes, that mirror the existing Django test case classes, but
provide a test Channel instead of Client.

* RPCSimpleTestCase
* RPCTransactionTestCase
* RPCTestCase

You can use these test case classes as you would for the regular Django test case classes, the self.channel attribute
will be an Channel instance:

from django_grpc_ framework.test import RPCTestCase
from django.contrib.auth.models import User

import account_pb2

import account_pb2_grpc

class UserServiceTest (RPCTestCase) :
def test_create_user(self):
stub = account_pb2_grpc.UserControllerStub (self.channel)
response = stub.Create (account_pb2.User (username='tom', email='tomlaccount.com

self.assertEqual (response.username, 'tom')
self.assertEqual (response.email, 'tom@account.com')
self.assertEqual (User.objects.count (), 1)

20 Chapter 1. User’s Guide

django-grpc-framework, Release 0.2

1.10 Settings

Configuration for gRPC framework is all namespaced inside a single Django setting, named GRPC_FRAMEWORK, for
example your project’s settings.py file might look like this:

GRPC_FRAMEWORK = {
'ROOT_HANDLERS_HOOK': 'project.urls.grpc_handlers',

}

1.10.1 Accessing settings

If you need to access the values of gRPC framework’s settings in your project, you should use the grpc_settings
object. For example:

from django_grpc_ framework.settings import grpc_settings
print (grpc_settings.ROOT_HANDLERS_HOOK)

The grpc_settings object will check for any user-defined settings, and otherwise fall back to the default values.
Any setting that uses string import paths to refer to a class will automatically import and return the referenced class,
instead of the string literal.

1.10.2 Configuration values

ROOT_HANDLERS_HOOK
A hook function that takes gRPC server object as a single parameter and add all servicers to the server.
Default: ' {settings.ROOT_URLCONF}.grpc_handlers'

One example for the hook function:

def grpc_handlers (server) :
demo_pb2_grpc.add_UserControllerServicer_to_server (UserService.as_servicer(),
—»server)

SERVER_INTERCEPTORS
An optional list of ServerInterceptor objects that observe and optionally manipulate the incoming RPCs before
handing them over to handlers.

Default: None

1.11 Patterns for gRPC

This part contains some snippets and patterns for Django gRPC framework.

1.11.1 Handling Partial Update

In proto3:
1. All fields are optional

2. Singular primitive fields, repeated fields, and map fields are initialized with default values (0, empty list, etc).
There’s no way of telling whether a field was explicitly set to the default value (for example whether a boolean
was set to false) or just not set at all.

1.10. Settings 21

django-grpc-framework, Release 0.2

If we want to do a partial update on resources, we need to know whether a field was set or not set at all. There are
different strategies that can be used to represent unset, we’ll use a pattern called "Has Pattern" here.

Singular field absence

In proto3, for singular field types, you can use the parent message’s HasField () method to check if a message type
field value has been set, but you can’t do it with non-message singular types.

For primitive types if you need HasField to you could use "google/protobuf/wrappers.proto". Wrap-
pers are useful for places where you need to distinguish between the absence of a primitive typed field and its default
value:

import "google/protobuf/wrappers.proto";

service PersonController {
rpc PartialUpdate (PersonPartialUpdateRequest) returns (Person) {}

message Person {
int32 id = 1;
string name = 2;
string email = 3;

message PersonPartialUpdateRequest {
int32 id = 1;
google.protobuf.StringValue name = 2;
google.protobuf.StringValue email = 3;

Here is the client usage:

from google.protobuf.wrappers_pb2 import StringValue

with grpc.insecure_channel ('localhost:50051") as channel:
stub = hrm_pb2_grpc.PersonControllerStub (channel)
request = hrm_pb2.PersonPartialUpdateRequest (id=1, name=StringValue (value="amy"))
response = stub.PartialUpdate (request)
print (response, end='")

The service implementation:

class PersonService (generics.GenericService) :
queryset = Person.objects.all()
serializer_class = PersonProtoSerializer

def PartialUpdate(self, request, context):
instance = self.get_object ()
serializer = self.get_serializer (instance, message=request, partial=True)
serializer.is_valid(raise_exception=True)
serializer.save ()
return serializer.message

Or you can just use PartialUpdateModelMixin to get the same behavior:

22 Chapter 1. User’s Guide

django-grpc-framework, Release 0.2

class PersonService (mixins.PartialUpdateModelMixin,
generics.GenericService) :
queryset = Person.objects.all()
serializer_class = PersonProtoSerializer

Repeated and map field absence

If you need to check whether repeated fields and map fields are set or not, you need to do it manually:

message PersonPartialUpdateRequest {
int32 id = 1;
google.protobuf.StringValue name = 2;
google.protobuf.StringValue email = 3;
repeated int32 groups = 4;
bool is_groups_set = 5;

1.11.2 Null Support

In proto3, all fields are never null. However, we can use Oneof to define a nullable type, for example:

syntax = "proto3";
package snippets;
import "google/protobuf/struct.proto";

service SnippetController {
rpc Update (Snippet) returns (Snippet) {}

message NullableString {
oneof kind {
string value = 1;
google.protobuf.NullValue null = 2;

message Snippet {
int32 id = 1;
string title = 2;
NullableString language = 3;

The client example:

import grpc

import snippets_pb2

import snippets_pb2_ grpc

from google.protobuf.struct_pb2 import NullValue

with grpc.insecure_channel ('localhost:50051") as channel:
stub = snippets_pb2_grpc.SnippetControllerStub (channel)

(continues on next page)

1.11. Patterns for gRPC 23

django-grpc-framework, Release 0.2

(continued from previous page)

request = snippets_pb2.Snippet (id=1, title='snippet title')
send non-null value

request.language.value = "python"

send null value

request.language.null = NullValue.NULL_VALUE

response = stub.Update (request)

print (response, end='")

The service implementation:

from django_grpc_ framework import generics, mixins
from django_grpc_framework import proto_serializers
from snippets.models import Snippet

import snippets_pb2

from google.protobuf.struct_pb2 import NullValue

class SnippetProtoSerializer (proto_serializers.ModelProtoSerializer):
class Meta:
model = Snippet
fields = '__all_ '

def message_to_data(self, message):
data = {
'title': message.title,
}

if message.language.HasField('value'):

data['language'] = message.language.value
elif message.language.HasField('null'"):
data['language'] = None

return data

def data_to_message(self, data):
message = snippets_pb2.Snippet (
id=datal['id'],
title=data['title'],
)

if data['language'] is None:
message.language.null = NullValue.NULL_VALUE
else:
message.language.value = datal['language']

return message

class SnippetService (mixins.UpdateModelMixin,
generics.GenericService) :
queryset = Snippet.objects.all()
serializer_class = SnippetProtoSerializer

24 Chapter 1. User’s Guide

CHAPTER 2

Additional Stuff

Changelog and license here if you are interested.

2.1 Changelog

2.1.1 Version 0.2

* Added test module
* Added proto serializers

* Added proto generators

2.1.2 Version 0.1

First public release.

2.2 License

This library is licensed under Apache License.
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

25

http://www.apache.org/licenses/

django-grpc-framework, Release 0.2

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is grant-
ing the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are con-
trolled by, or are under common control with that entity. For the purposes of this definition, “control”
means (i) the power, direct or indirect, to cause the direction or management of such entity, whether
by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares,
or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

“Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and con-
versions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally submit-
ted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the purposes of this definition, “sub-
mitted” means any form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the
purpose of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in

26 Chapter 2. Additional Stuff

django-grpc-framework, Release 0.2

any medium, with or without modifications, and in Source or Object form, provided that You meet
the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files;
and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within
such NOTICE file, excluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices within
Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as modifying
the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions. Notwithstanding the above, nothing herein
shall supersede or modify the terms of any separate license agreement you may have executed with
Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a result of
this License or out of the use or inability to use the Work (including but not limited to damages for
loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf

2.2. License 27

django-grpc-framework, Release 0.2

of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the
fields enclosed by brackets “[]” replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate comment syntax for the file
format. We also recommend that a file or class name and description of purpose be included
on the same “printed page” as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

28

Chapter 2. Additional Stuff

http://www.apache.org/licenses/LICENSE-2.0

Index

A L

as_servicer () (django_grpc_framework.services.Servitd st () (django_grpc_framework.mixins.ListModelMixin

class method), 13 method), 15
ListModelMixin (class in
G django_grpc_framework.mixins), 15
Create () (django_grpc_framework.mixins.CreateModelMixig: Service (class in
method), 15 django_grpc_framework.generics), 16
CreateModelMixin (class in
django_grpc_framework.mixins), 15 M
CreateService (class in ModelService (class in
django_grpc_framework.generics), 16 django_grpc_framework.generics), 17

D P

Destroy () (django_grpc_framework mixins. Destroy Modepl]el/lrwgg rm_create () (django_grpc_framework.mixins.CreateModelMixi

method), 16 method), 16
DestroyModelMixin (class in perform dest;oy 0
Dest dsjang 0,—g rpe_framework. ?ZIIZZZS)’ 16 in (django_grpc_framework.mixins.DestroyModelMixin
estroyService
. . method), 16
django_grpe_framework.generics), 16 perform_update () (django_grpc_framework.mixins. UpdateModelMix
F method), 16
filter_queryset ()
(django_grpc_framework.generics.GenericService
m{eth(;gd)_glé) S 8 ReadOnlyModelService (class in
’ django_grpc_framework.generics), 16
G Retrieve () (django_grpc_framework.mixins.RetrieveModelMixin
GenericService (class in method), 16 .
RetrieveModelMixin (class in

django_grpc_framework.generics), 15 i N
get_obiject () (django_grpc_framework.generics.GenericService Uango_grpc_framework.mixins), 16
method), 15 RetrieveService (class in

get_queryset () (django_grpc_framework.generics.GenericServidl#go_grpc_framework.generics), 16

method), 15 ROOT_HANDLERS_HOOK (built-in variable), 21
get_serializer () (django_grpc_framework.generics. gnericService
method), 15
get_serializer_class () SERVER_INTERCEPTORS (built-in variable), 21
(django_grpc _framework.generics.GenericServiceU
method), 15
get_serializer_context () Update () (django_grpc_framework.mixins. UpdateModelMixin
(django_grpc_framework.generics.GenericService method), 16
method), 15

29

django-grpc-framework, Release 0.2

UpdateModelMixin (class in
django_grpc_framework.mixins), 16
UpdateService (class in

django_grpc_framework.generics), 16

30 Index

	User’s Guide
	Installation
	Quickstart
	Tutorial
	Services
	Generic services
	Proto Serializers
	Proto
	Server
	Testing
	Settings
	Patterns for gRPC

	Additional Stuff
	Changelog
	License

	Index

